¿Qué es la ciencia de datos? Explicación de la ciencia de datos

Aunque ambos se superpongan entre sí, la diferencia clave consiste en el uso de la tecnología en cada campo. Los científicos de datos trabajan de manera más estrecha con la tecnología de datos que los analistas empresariales. Definen casos empresariales, recopilan información de las partes interesadas o validan soluciones.

que es la ciencia de datos

Los científicos de datos los crean ejecutando aprendizaje automático, minería de datos o algoritmos estadísticos contra conjuntos de datos para predecir escenarios comerciales y resultados o comportamientos probables. En el modelado predictivo y otras aplicaciones de análisis avanzado, el muestreo de datos a menudo se realiza para analizar un subconjunto representativo de datos, una técnica de minería de datos diseñada para hacer que el proceso de análisis sea más manejable y requiera menos tiempo. Las tecnologías de código abierto se utilizan ampliamente en conjuntos https://www.digitaltoo.com/2023/11/23/un-curso-de-ciencia-de-datos-online-que-disparara-tu-carrera-profesional/ de herramientas de ciencia de datos. Cuando están alojadas en la nube, los equipos no necesitan instalarlas, configurarlas, mantenerlas o actualizarlas localmente. Varios proveedores de la nube, incluido IBM® Cloud, también ofrecen kits de herramientas preempaquetados que permiten a los científicos de datos crear modelos sin codificación, democratizando aún más el acceso a las innovaciones tecnológicas y los insights extraídos de los datos. El uso de tecnologías de código abierto está muy generalizado en los conjuntos de herramientas de ciencia de datos.

Inteligencia Artificial

Lo cierto es que por medio de técnicas estadísticas (típicas de la jurimetría), analíticas, matemáticas y computacionales que aplica la ciencia de datos, hoy en día los abogados pueden realizar acciones que antes no podían. También existe el aprendizaje profundo, una rama más avanzada del aprendizaje automático que utiliza principalmente redes neuronales artificiales para analizar grandes conjuntos de datos sin etiquetar. En otro artículo, Schmelzer de Cognilytica explica la relación entre la ciencia de datos, el aprendizaje automático y la IA, detallando sus diferentes características y cómo se pueden combinar en aplicaciones analíticas. Para realizar estas tareas, los científicos de datos deben tener más conocimientos de ciencia informática y ciencias puras más allá de las de un analista de negocios o analista de datos típico. El científico de datos también debe comprender los detalles del negocio, como la fabricación de automóviles, el comercio electrónico o el cuidado de la salud.

Este es un software de código abierto que facilita la resolución de problemas computacionales complejos y tareas intensivas de datos. Fue creado por la Fundación de Software Apache, por lo tanto cuenta con varias herramientas para la gestión de los trozos en los que divide la información para un mejor manejo. Como ves la lista de aplicaciones donde se utilizan modelos o algoritmos de “machine learning” y se utiliza la ciencia de datos es interminable. Antes de responder la pregunta de qué es la ciencia de datos debes saber que los datos son símbolos en estado puro (no procesados) que codifican un mensaje o una información en un lenguaje digital. Este lenguaje solo puede ser leído y comprendido por sistemas computarizados de analítica, no por humanos.

¿Cuál es la diferencia entre la ciencia de datos y la ingeniería de datos?

Por ejemplo, una pequeña empresa, que tenga un listado en Excel con la información de los clientes y los proveedores, no puede considerarse como una compañía que tenga datos masivos. Cuando hablamos de ciencia de datos tenemos que considerar aspectos muy diferentes que se pueden ver en este diagrama de Venn donde se juntan las habilidades de computación, matemáticas y estadística y habilidades de negocio. Según el estudio 2020 Wolters Kluwer Future Ready Lawyer, el 72 % de los abogados considera que hacer frente al aumento del volumen y de la complejidad de la información será una de las principales tendencias que afectarán sus organizaciones durante los próximos tres años. De aquí la gran importancia de comprender qué es la ciencia de datos y para qué sirve dentro de las firmas modernas y en el sector legal en general.

Las organizaciones modernas están inundadas de datos; hay una proliferación de dispositivos que pueden recopilar y almacenar información de manera automática. Los sistemas en línea y los portales de pago capturan más datos en los campos del comercio electrónico, la medicina, las finanzas y cualquier otro aspecto de la vida humana. Con base en todo lo explicado hasta ahora, podemos decir que la importancia de la ciencia de datos para los abogados reside en la posibilidad de generar un conocimiento Un curso de ciencia de datos online que disparará tu carrera profesional profundo de cualquier proyecto, e incluso del negocio jurídico en general y hasta de los competidores y clientes. En este sentido, al aplicar herramientas de ciencia de datos para  la toma de decisiones jurídicas, comerciales y gerenciales se logran prever, prevenir o reaccionar efectivamente a aquellas situaciones que puedan afectar la gestión de la firma o el resultado de un proceso legal. Esto con el objetivo de mejorar la toma de decisiones y diseñar estrategias cada vez más efectivas.

Descubre qué es ChatGPT: La Revolución de la Inteligencia Artificial

El objetivo es convertirlos en información capaz de interpretarse por el ser humano y que le ayude a tomar decisiones. La ciencia de datos es importante para las empresas o instituciones que deben trabajar con una gran cantidad de datos. En América Latina contamos con herramientas de legaltech que cuentan con potentes funcionalidades de análisis de datos. Aunque su sistema no es tan complejo como otros especializados en ciencia de datos, este software cuenta con un módulo de business intelligence para analizar datos sobre la productividad y la rentabilidad tanto de socios, abogados y clientes.

  • Si el encargado de procesar la información y de tomar decisiones no sabe cómo incidirá sobre los resultados financieros de la empresa, puede que los objetivos estratégicos no estén alineados y haya problemas de resultados.
  • Los científicos de datos también adquieren competencias de uso de plataformas de proceso de big data, como Apache Spark, el marco de trabajo de código abierto Apache Hadoop y las bases de datos NoSQL.
  • De modo que se puedan tomar decisiones estratégicas para mejorar el flujo de caja de la firma.
  • En el modelado predictivo y otras aplicaciones de análisis avanzado, el muestreo de datos a menudo se realiza para analizar un subconjunto representativo de datos, una técnica de minería de datos diseñada para hacer que el proceso de análisis sea más manejable y requiera menos tiempo.

SAS es un lenguaje de programación en el que confían cientos de miles de científicos de datos de todo el mundo. La plataforma SAS Viya permite a su organización combinar las ventajas de todos los sistemas de tecnología y lenguajes de programación para mejorar el desarrollo e implantación de modelos analíticos. Descubra cómo SAS Viya puede ayudarle a trasformar esa combinación de modelos en decisiones empresariales más inteligentes.

Para ser científico de datos existen diferentes formas de adquirir el conocimiento necesario. Las universidades están empezando a ofrecer cursos y diplomados y algunas, maestrías y doctorados en ciencia de datos. Asegúrate de que la plataforma pueda escalar con tu negocio a medida que crece tu equipo. La plataforma debe contar con un alto grado de disponibilidad, tener controles de acceso robustos y admitir una gran cantidad de usuarios simultáneos. Cloud computing escala la ciencia de datos proporcionando acceso a más potencia de proceso, almacenamiento y otras herramientas necesarias para proyectos de ciencia de datos. Para facilitar el uso compartido de código y otra información, los científicos de datos pueden utilizar cuadernos de Jupyter y GitHub.

Las Voces de Ingenierías: La Ciencia de Datos y las inteligencias … – upress.mx

Las Voces de Ingenierías: La Ciencia de Datos y las inteligencias ….

Posted: Thu, 09 Nov 2023 08:00:00 GMT [source]

Implica la aplicación de sofisticadas herramientas analíticas y conceptos científicos. Muchas empresas se dieron cuenta de que, sin una plataforma integrada, el trabajo de data science era ineficiente, inseguro y difícil de ampliar. Estas plataformas son centros de software, alrededor de los cuales se lleva a cabo todo el trabajo de ciencia de datos. Una buena plataforma alivia muchos de los desafíos de la implementación de la data science y ayuda a las empresas a convertir sus datos en información de forma más rápida y eficiente. La ciencia de datos puede revelar lagunas y problemas que de otro modo pasarían desapercibidos.

Leave a comment